419 research outputs found

    Detecting a Higgs Pseudoscalar with a ZZ Boson at the LHC

    Full text link
    We have adopted two Higgs doublet models to study the production of a Higgs pseudoscalar (A0A^0) in association with a ZZ gauge boson from gluon fusion (gg→ZA0gg \to ZA^0) at the CERN Large Hadron Collider. The prospects for the discovery of ZA0→ℓℓˉbbˉZA^0 \to \ell \bar{\ell} b\bar{b} are investigated with physics backgrounds and realistic cuts. Promising results are found for m_A \alt 260 GeV in two Higgs doublet models when the heavier Higgs scalar (H0H^0) can decay into a ZZ boson and a Higgs pseudoscalar (A0A^0). Although the cross section of gg→ZA0gg \to ZA^0 is usually small in the minimal supersymmetric standard model, it can be significantly enhanced in general two Higgs doublet models. This discovery channel might provide an opportunity to search for a Higgs scalar and a Higgs pseudoscalar simultaneously at the LHC and could lead to new physics beyond the Standard Model and the minimal supersymmetric model.Comment: Two tables added for the ratio of signal/backgroun

    Binary-black-hole initial data with nearly-extremal spins

    Get PDF
    There is a significant possibility that astrophysical black holes with nearly-extremal spins exist. Numerical simulations of such systems require suitable initial data. In this paper, we examine three methods of constructing binary-black-hole initial data, focusing on their ability to generate black holes with nearly-extremal spins: (i) Bowen-York initial data, including standard puncture data (based on conformal flatness and Bowen-York extrinsic curvature), (ii) standard quasi-equilibrium initial data (based on the extended-conformal-thin-sandwich equations, conformal flatness, and maximal slicing), and (iii) quasi-equilibrium data based on the superposition of Kerr-Schild metrics. We find that the two conformally-flat methods (i) and (ii) perform similarly, with spins up to about 0.99 obtainable at the initial time. However, in an evolution, we expect the spin to quickly relax to a significantly smaller value around 0.93 as the initial geometry relaxes. For quasi-equilibrium superposed Kerr-Schild (SKS) data [method (iii)], we construct initial data with \emph{initial} spins as large as 0.9997. We evolve SKS data sets with spins of 0.93 and 0.97 and find that the spin drops by only a few parts in 10^4 during the initial relaxation; therefore, we expect that SKS initial data will allow evolutions of binary black holes with relaxed spins above 0.99. [Abstract abbreviated; full abstract also mentions several secondary results.

    Accurate gravitational waveforms for binary-black-hole mergers with nearly extremal spins

    Full text link
    Motivated by the possibility of observing gravitational waves from merging black holes whose spins are nearly extremal (i.e., 1 in dimensionless units), we present numerical waveforms from simulations of merging black holes with the highest spins simulated to date: (1) a 25.5-orbit inspiral, merger, and ringdown of two holes with equal masses and spins of magnitude 0.97 aligned with the orbital angular momentum; and (2) a previously reported 12.5-orbit inspiral, merger, and ringdown of two holes with equal masses and spins of magnitude 0.95 anti-aligned with the orbital angular momentum. First, we consider the horizon mass and spin evolution of the new aligned-spin simulation. During the inspiral, the horizon area and spin evolve in remarkably close agreement with Alvi's analytic predictions, and the remnant hole's final spin agrees reasonably well with several analytic predictions. We also find that the total energy emitted by a real astrophysical system with these parameters---almost all of which is radiated during the time included in this simulation---would be 10.952% of the initial mass at infinite separation. Second, we consider the gravitational waveforms for both simulations. After estimating their uncertainties, we compare the waveforms to several post-Newtonian approximants, finding significant disagreement well before merger, although the phase of the TaylorT4 approximant happens to agree remarkably well with the numerical prediction in the aligned-spin case. We find that the post-Newtonian waveforms have sufficient uncertainty that hybridized waveforms will require far longer numerical simulations (in the absence of improved post-Newtonian waveforms) for accurate parameter estimation of low-mass binary systems.Comment: 17 pages, 7 figures, submitted to Classical and Quantum Gravit

    Assessing the Energetics of Spinning Binary Black Hole Systems

    Full text link
    In this work we study the dynamics of spinning binary black hole systems in the strong field regime. For this purpose we extract from numerical relativity simulations the binding energy, specific orbital angular momentum, and gauge-invariant orbital frequency. The goal of our work is threefold: First, we extract the individual spin contributions to the binding energy, in particular the spin-orbit, spin-spin, and cubic-in-spin terms. Second, we compare our results with predictions from waveform models and find that while post-Newtonian approximants are not capable of representing the dynamics during the last few orbits before merger, there is good agreement between our data and effective-one-body approximants as well as the numerical relativity surrogate models. Finally, we present phenomenological representations for the binding energy for non-spinning systems with mass ratios up to q=10q = 10 and for the spin-orbit interaction for mass ratios up to q=8q = 8 obtaining accuracies of ≲0.1%\lesssim 0.1\% and ≲6%\lesssim 6\%, respectively

    Simulating merging binary black holes with nearly extremal spins

    Get PDF
    Astrophysically realistic black holes may have spins that are nearly extremal (i.e., close to 1 in dimensionless units). Numerical simulations of binary black holes are important tools both for calibrating analytical templates for gravitational-wave detection and for exploring the nonlinear dynamics of curved spacetime. However, all previous simulations of binary-black-hole inspiral, merger, and ringdown have been limited by an apparently insurmountable barrier: the merging holes' spins could not exceed 0.93, which is still a long way from the maximum possible value in terms of the physical effects of the spin. In this paper, we surpass this limit for the first time, opening the way to explore numerically the behavior of merging, nearly extremal black holes. Specifically, using an improved initial-data method suitable for binary black holes with nearly extremal spins, we simulate the inspiral (through 12.5 orbits), merger and ringdown of two equal-mass black holes with equal spins of magnitude 0.95 antialigned with the orbital angular momentum.Comment: 4 pages, 2 figures, updated with version accepted for publication in Phys. Rev. D, removed a plot that was incorrectly included at the end of the article in version v

    Numerical-relativity surrogate modeling with nearly extremal black-hole spins

    Full text link
    Numerical relativity (NR) simulations of binary black hole (BBH) systems provide the most accurate gravitational wave predictions, but at a high computational cost -- especially when the black holes have nearly extremal spins (i.e. spins near the theoretical upper limit) or very unequal masses. Recently, the technique of Reduced Order Modeling (ROM) has enabled the construction of surrogate models trained on an existing set of NR waveforms. Surrogate models enable the rapid computation of the gravitational waves emitted by BBHs. Typically these models are used for interpolation to compute gravitational waveforms for BBHs with mass ratios and spins within the bounds of the training set. Because simulations with nearly extremal spins are so technically challenging, surrogate models almost always rely on training sets with only moderate spins. In this paper, we explore how well surrogate models can extrapolate to nearly extremal spins when the training set only includes moderate spins. For simplicity, we focus on one-dimensional surrogate models trained on NR simulations of BBHs with equal masses and equal, aligned spins. We assess the performance of the surrogate models at higher spin magnitudes by calculating the mismatches between extrapolated surrogate model waveforms and NR waveforms, by calculating the differences between extrapolated and NR measurements of the remnant black-hole mass, and by testing how the surrogate model improves as the training set extends to higher spins. We find that while extrapolation in this one-dimensional case is viable for current detector sensitivities, surrogate models for next-generation detectors should use training sets that extend to nearly extremal spins

    Visualizing Spacetime Curvature via Frame-Drag Vortexes and Tidal Tendexes II. Stationary Black Holes

    Get PDF
    When one splits spacetime into space plus time, the Weyl curvature tensor (which equals the Riemann tensor in vacuum) splits into two spatial, symmetric, traceless tensors: the tidal field EE, which produces tidal forces, and the frame-drag field BB, which produces differential frame dragging. In recent papers, we and colleagues have introduced ways to visualize these two fields: tidal tendex lines (integral curves of the three eigenvector fields of EE) and their tendicities (eigenvalues of these eigenvector fields); and the corresponding entities for the frame-drag field: frame-drag vortex lines and their vorticities. These entities fully characterize the vacuum Riemann tensor. In this paper, we compute and depict the tendex and vortex lines, and their tendicities and vorticities, outside the horizons of stationary (Schwarzschild and Kerr) black holes; and we introduce and depict the black holes' horizon tendicity and vorticity (the normal-normal components of EE and BB on the horizon). For Schwarzschild and Kerr black holes, the horizon tendicity is proportional to the horizon's intrinsic scalar curvature, and the horizon vorticity is proportional to an extrinsic scalar curvature. We show that, for horizon-penetrating time slices, all these entities (EE, BB, the tendex lines and vortex lines, the lines' tendicities and vorticities, and the horizon tendicities and vorticities) are affected only weakly by changes of slicing and changes of spatial coordinates, within those slicing and coordinate choices that are commonly used for black holes. [Abstract is abbreviated.]Comment: 19 pages, 7 figures, v2: Changed to reflect published version (changes made to color scales in Figs 5, 6, and 7 for consistent conventions). v3: Fixed Ref

    Massive disk formation in the tidal disruption of a neutron star by a nearly extremal black hole

    Get PDF
    Black hole-neutron star (BHNS) binaries are important sources of gravitational waves for second-generation interferometers, and BHNS mergers are also a proposed engine for short, hard gamma-ray bursts. The behavior of both the spacetime (and thus the emitted gravitational waves) and the neutron star matter in a BHNS merger depend strongly and nonlinearly on the black hole's spin. While there is a significant possibility that astrophysical black holes could have spins that are nearly extremal (i.e. near the theoretical maximum), to date fully relativistic simulations of BHNS binaries have included black-hole spins only up to S/M2S/M^2=0.9, which corresponds to the black hole having approximately half as much rotational energy as possible, given the black hole's mass. In this paper, we present a new simulation of a BHNS binary with a mass ratio q=3q=3 and black-hole spin S/M2S/M^2=0.97, the highest simulated to date. We find that the black hole's large spin leads to the most massive accretion disk and the largest tidal tail outflow of any fully relativistic BHNS simulations to date, even exceeding the results implied by extrapolating results from simulations with lower black-hole spin. The disk appears to be remarkably stable. We also find that the high black-hole spin persists until shortly before the time of merger; afterwards, both merger and accretion spin down the black hole.Comment: 20 pages, 10 figures, submitted to Classical and Quantum Gravit
    • …
    corecore